
CLOUD MIGRATION USE CASE:

MOVING FROM AWS TO GCP

USE CASE | CLOUD MIGRATION: MOVING FROM AWS TO GCP | 01A | 2020-04

Facing a highly competitive marketplace and looking at geographical expansion, a multi-media and telecommunications start-up
decided to explore moving its customer-facing applications away from Amazon Web Services (AWS) to other cloud platforms. The
web and mobile applications through which its customers managed services, paid bills, checked rewards and subscribed to plans
were all on AWS. Working on AWS had resulted in a high cost structure, reliance on AWS services and lack of flexibility to benefit
from new tools outside the AWS ecosystem.

The development team started to explore options to migrate and standardize on a single cloud provider that could provide better
technology and service level agreements (SLAs) across geographical locations cost effectively. They decided on Google Cloud
Platform (GCP) for several reasons. Demand-based scaling is extremely easy and responsive, there are options to customize CPU
& RAM amounts and; pricing is straightforward and results in lower costs. Being able to leverage Google’s network infrastructure
capabilities, better hardware and excellent security were other key factors. From an application development perspective, the team
had been wanting to try out Elastic Kubernetes Service (EKS) for their containerized applications but did not have the necessary
Kubernetes skillsets to support implementation. Google Kubernetes Engine (GKE) provided node health monitoring and auto-
repairs by default, enabling automatic updates of Kubernetes Master and Nodes. This would mitigate skill gaps and reduce
 time required for cluster management and operations.

 Cloud to Cloud

APPROACH
Plan Upfront and Run a Proof-of-Concept

A project team was assembled to review the risks and benefits:
•  How would the new architecture impact and change application management processes?
•  What actions were needed to manage costs?
•  What were the full set of applications running and what were their dependencies?
•  What was the criticality of the applications and data to be moved?
•  What privacy and cross-border regulations had to be taken into consideration for data migration?
•  What was needed to maintain data integrity and business continuity?
•  How could network latencies and operational disruption be kept to a minimum during the migration?

As part of the evaluation, a proof-of-concept (POC) was carried out. The objective was to see if a “lift and shift” approach was possible.
The team further wanted to test out running a Kubernetes cluster on GKE. A test development environment was set up on GCP. This
allowed the project team to test out their planning assumptions and migration tool set. The POC enabled the team to identify key
risks, and fine-tune budget/scope planning for the main project.

Evaluate and Prepare Current State of Infrastructure, Applications and Data

Prior to migration, the team carried out a deep dive and preparation of the current AWS-based architecture:
•  Network:
 Routing/IP, subnets, host names and load balancers were mapped out
•  Server Setup and Configuration:
 Blue/green deployment, redundancy, size (vCPU, memory), OS and machine types, load balancers in place for auto-scaling
 were reviewed

USE CASE | CLOUD MIGRATION: MOVING FROM AWS TO GCP | 01A | 2020-04

•  Services:
 AWS services in use were consolidated and mapped against corresponding
 GCP products and gaps identified
•  Data Migration:
 A read replica was created to enable migration from the relational database
 (MySQL) on AWS cloud to Google Cloud SQL on GCP
•  Application Architecture:
 Dependencies were studied and a run-book was created for groups of VMs
 as certain applications required high reliability and availability

Migrate, Anticipate, Manage

After the initial groundwork, a clear 4 week project goal was defined:
•  Move SIT, UAT and Production environments from AWS to GCP
•  Create a number of Kubernetes clusters

Main Tasks were:
1.  Create GCP Account and ensure team have relevant access to existing
 AWS instances
2.  Configure project and organization on GCP for migration
3.  Create relevant roles & service accounts following permission structure
 on AWS IAM (Identity and Access Management)
4.  Setup account in the tool for exporting and migrating VM
5.  Install agent tool in AWS EC2 instances to enable live replication
6.  Create blueprint (properties of target machine on Google Cloud type of
 instance, name, subnet etc) for configuration of instance on Google
 Cloud once the replication is completed
7.  Launch machines on GCP in test mode to test continuous data
 replication between AWS and GCP
8.  Complete testing on migrated instance and implement cutover mode to
 remove all contact with AWS instance

Contact our enablement team:
GianLuca Carola
gianluca.carola@biqmind.com
Vinod Narayanankutty
vinod.nara@biqmind.com

WHY WORK WITH BIQMIND
Biqmind provides cloud-native specialist resources and software tools that help
companies make the migration to cloud possible. Our certified specialists have field
experience with large-scale migration projects across a variety of industries. From
evaluating existing workloads, developing a strategic plan, performing production
deployments, to mentoring your teams, we build a sustainable roadmap and equip
your team to effectively adopt and unlock the benefits of new platforms.

 Cloud to Cloud Migraton

KEY OUTCOMES
Moving an enterprise workload to another cloud provider is not without its challenges, and the team found that besides solving
problems, it was important to anticipate and resolve new ones. Unused/redundant instances were identified before migration and
deleted to reduce space and cost on GCP. Infrastructure requirements were also re-factored with respect to application dependencies.

The migration was successful with these outcomes achieved:
•  Significant cost-savings
•  Better and faster infrastructure
•  Flexibility to introduce different tools
•  Access to a managed Kubernetes platform
•  Access to Google’s security tools

Important Notes:
a. Create servers behind application
 load balancers in private
 subnets in different Availability
 Zones (AZs) to ensure application
 redundancy across GCP AZs
b. Project requirements may require
 public facing servers being
 provisioned with public subnets
c. Put Disaster Recovery plans in place
d. Use Stackdriver for monitoring
 workloads on GCP
e. Set up elasticity and autoscaling
f. Use templates (configuration as
 code) on Google’s Cloud
 Deployment Manager to launch
 and scale new instances
g. Move any unused and static assets
 to archival storage (cold storage)
 on GCP (similar to Glacier on AWS)
h. Migrate any data and volumes
 attached to instances before
 migrating the instances themselves
i. Use the lift and shift approach for
 application migration where possible
j. Use VPN if possible as replication
 using public IP for migration can
 slow down the migration process

